Find the value of x for which following expression are defined: $\frac{1}{\sqrt{x-|x|}}$ |
So, $\frac{1}{\sqrt{x-|x|}}$ is not defined for any $x∈I$ So, $\frac{1}{\sqrt{x-|x|}}$ is not defined for any $x∈R$ So, $\frac{1}{\sqrt{x-|x|}}$ is defined for any $x∈R$ So, $\frac{1}{\sqrt{x-|x|}}$ is defined for any $x∈I$ |
So, $\frac{1}{\sqrt{x-|x|}}$ is not defined for any $x∈R$ |
$x-|x|=\left\{\begin{matrix}x-x=0,\,if\,x≥0\\x+x=2x,\,if\,x<0\end{matrix}\right.$ $⇒x-|x|≤0$, for all x Thus, $\frac{1}{\sqrt{x-|x|}}$ does not take real value for any $x∈R$ So, $\frac{1}{\sqrt{x-|x|}}$ is not defined for any $x∈R$ |