If $\frac{8r}{r^2-8r+1}=\frac{1}{14}$, then the value of $(r +\frac{1}{r})$ is __________. |
88 100 120 60 |
120 |
If $\frac{8r}{r^2-8r+1}=\frac{1}{14}$, then the value of $(r +\frac{1}{r})$ = ? $\frac{8r}{r^2-8r+1}=\frac{1}{14}$ = 112r = r2 - 8r + 1 = r2 - 120r + 1 Divide both the sides of the above equation by r then we get, r + \(\frac{1}{r}\) = 120 |