A and B are events such that P(A)= 0.4, P(B)=0.3 and P(A ∪ B)= 0.5, then P(B ∩ A') is equal to : |
0.2 0.1 0.3 0.4 |
0.1 |
The correct answer is option (2) → 0.1 $P(B ∩ A')=P(B)-P(A ∩ B)$ ...(1) we know that $P(A∪B)+P(A ∩ B)=P(A)+P(B)$ $P(A ∩ B)=P(A)+P(B)-P(A∪B)$ $=0.4+0.3-0.0.2=P(A ∩ B)$ so from (1) $P(B ∩ A')=0.3-0.2=0.1$ |