If $A\begin{vmatrix}x-2&-3\\3x&2x\end{vmatrix}=3$. What are the possible valve for x? |
\(3, \frac{1}{3}\) \(2, \frac{1}{2}\) \(-3, \frac{1}{2}\) \(3, \frac{-1}{2}\) |
\(-3, \frac{1}{2}\) |
The correct answer is Option (3) → \(-3, \frac{1}{2}\) $A\begin{vmatrix}x-2&-3\\3x&2x\end{vmatrix}=3$ $⇒2x(x-2)+9x=3$ $⇒2x^2-4x+9x=3$ $⇒2x^2+5x-3=0$ $⇒2x^2+6x-x-3=0$ $⇒2x(x+3)-1(x+3)=0$ $⇒(x+3)(2x-1)=0$ $⇒x=-3\,or\,\frac{1}{2}$ |