Let the determinant be $\Delta=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ Which of the following statements are correct? (A) $\Delta$ is independent of $\theta$ Choose the correct answer from the options given below: |
(A) Only (A), (B) and (C) Only (A) and (E) Only (D) Only |
(A) Only |
The correct answer is Option (1) → (A) Only $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ $=x(-x^2-1)+\sin θ(\cos θ+x\sin θ)+\cos θ(-\sin θ+x\cos θ)$ $=-x^3-x+\sin θ\cos θ+x\sin^2θ-\sin θ\cos θ+x^2\cos^2θ$ $=-x^3-x+x(\sin^2θ+\cos^2θ)$ $⇒-x^3$ |