If $a > b > c > 0,$ which of the following is always positive ? (A) $(a-c)÷b$ (B) $b+c-a$ (C) $(c-b)×(a-b)$ (D) $(c-b) × (b-a)$ (E) $(a×b) - (a ×c)$ Choose the correct answer from the options given below : |
(A), (B), (D) only (A) only (A), (D), (E) only (C), (D), (E) only |
(A), (D), (E) only |
The correct answer is Option (3) → (A), (D), (E) only $a > b > c > 0$ [given] $⇒a-b>0;b-c>0;a-c>0$ (A) $(a-c)÷b$ will always be positive as both $(a-c)$ and $b$ is positive. (D) $(c-b)<0, (b-a)<0$ $∴(c-b)(b-a)>0$ $[-1×-2=2]$ → Ex. (E) $(a×b) - (a ×c)=a×(b-c)$ as both (A) and $(b-c)$ is positive the product will be also a positive. |