Let $f(x)=(a x+b) \cos x+(c x+d) \sin x$ and $f'(x)=x \cos x$ for all $x$. Then, |
$a=0, b=c=1, d=0$ $a=b=c=d=1$ $a=d=0, b=c=-1$ none of these |
$a=0, b=c=1, d=0$ |
We have, $f(x)=(a x+b) \cos x+(c x+d) \sin x$ $\Rightarrow f'(x)=-(a x+b) \sin x+a \cos x+(c x+d) \cos x+c \sin x$ $\Rightarrow f'(x)=(c x+d+a) \cos x+(c-a x-b) \sin x$ But, f'(x) = x cos x for all x ∴ $(c x+d+a) \cos x+(c-a x-b) \sin x=x \cos x$ for all x $\Rightarrow c=1, d+a=0, a=0$ and $c-b=0$ $\Rightarrow a=0, b=c=1, d=0$ |