If $ x + \frac{1}{x} = \sqrt{7}$, then what is the value of $(x^2 + 1) ÷ [ x^4 +(\frac{1}{x^2})]$? |
$2\sqrt{7}$ $3\sqrt{7}$ $\frac{1}{2}$ $\frac{1}{4}$ |
$\frac{1}{4}$ |
If $ x + \frac{1}{x} = \sqrt{7}$, then what is the value of $(x^2 + 1) ÷ [ x^4 +(\frac{1}{x^2})]$ We can write $(x^2 + 1) ÷ [ x^4 +(\frac{1}{x^2})]$ this equation as (x + \(\frac{1}{x}\)) ÷ [ x3 + \(\frac{1}{x^3}\)] by dividing x on both numerator and denominator. We know that, If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n $x^3 +\frac{1}{x^3}$ = ($\sqrt{7}$)3 - 3 × $\sqrt{7}$ = $4\sqrt{7}$ Put these values in the required equation, = $(x + \frac{1}{x})$ ÷ [ $x^3 +(\frac{1}{x^3})]$ = $\sqrt{7}$ ÷ $4\sqrt{7}$ = $\frac{1}{4}$ |