Find the angle between the vectors \(\vec{a}\) = \(\hat{i}\) + 2\(\hat{j}\)+ 3\(\hat{k}\) and \(\vec{b}\) = 2\(\hat{i}\) + \(\hat{j}\)+ 3\(\hat{k}\). |
cos-1(11/14) cos-1(13/14) cos-1(17/14) cos-1(19/14) |
cos-1(13/14) |
We have the vectors \(\vec{a}\) = \(\hat{i}\) + 2\(\hat{j}\)+ 3\(\hat{k}\) and \(\vec{b}\) = 2\(\hat{i}\) + \(\hat{j}\)+ 3\(\hat{k}\). Magnitude \(\vec{a}\) = |\(\vec{a}\)| = √{(1)2+(2)2+(3)2} = √14 Magnitude \(\vec{b}\) =|\(\vec{b}\)| = √{(2)2+(1)2+(3)2} = √14 \(\vec{a}\).\(\vec{b}\)= (\(\hat{i}\) + 2\(\hat{j}\)+ 3\(\hat{k}\)).(2\(\hat{i}\) + \(\hat{j}\)+ 3\(\hat{k}\)) \(\vec{a}\).\(\vec{b}\) = ( 2+2+9) =13 we know that \(\vec{a}\).\(\vec{b}\) = |\(\vec{a}\)|.|\(\vec{b}\)| cos(θ) ⇒ cos(θ) = 13/( √14). (√14) ⇒ θ = cos-1(13/14)
|