If $x^{2}+8y^{2}+12y-4xy+9 = 0$, then the value of $(7x + 8y)$ is : |
-33 9 33 -9 |
33 |
Given, x2 + 8y2 – 12y – 4xy + 9 = 0 We know that, (a – b)2 = a2 + b2 – 2ab x2 + 8y2 – 12y – 4xy + 9 = 0 ⇒ x2 + 4y2 + 4y2 – 12y – 4xy + 9 = 0 ⇒ (x2 + 4y2 – 4xy) + (4y2 – 12y + 9) = 0 ⇒ (x – 2y)2 + (2y – 3)2 = 0 Now, 2y – 3 = 0 y = \(\frac{3}{2}\) Put the value of y in x – 2y x – 2 × \(\frac{3}{2}\) = 0 x = 3 $(7x + 8y)$ = 7× 3 + 8×\(\frac{3}{2}\) $(7x + 8y)$ = 33 |