If the area bounded by the curve $y^2=16x$ and the line $y = mx$ is $\frac{2}{3}$ sq.units, then value of m is : |
1 2 3 4 |
4 |
The correct answer is Option (4) → 4 Given equations are, $y^2=16x$ ...(1) $y = mx$ ...(2) for $x≠0$, $(mx)^2=16x$ $⇒m^2x=16⇒x=\frac{16}{m^2}$ and, $y=m×\frac{16}{m^2}=\frac{16}{m}$ Thus the non-zero intersection point is $\left(\frac{16}{m^2},\frac{16}{m}\right)$ $∴A=\int\limits_0^{16/m^2}(4\sqrt{x}-mx)dx$ $=\left[\frac{8}{3}x^{3/2}-m\frac{x^2}{2}\right]_0^{16/m^2}$ $=\frac{512}{3m^3}-\frac{128}{m^3}=\frac{128}{3m^3}$ $⇒\frac{128}{3m^3}=\frac{2}{3}$ $⇒m^3=\frac{128}{2}=64$ $⇒m=4$ |