If 1 + 2tan2 θ + 2sin θ sec2 θ = \(\frac{m}{n}\), 0° < θ < 90°, then \(\frac{m + n}{m - n}\) ? |
sin θ cosec θ cos θ sec θ |
cosec θ |
⇒ 1 + tan2 θ + tan2 θ + 2tan θ sec θ ⇒ (tan θ + sec θ)2 = \(\frac{m}{n}\) ⇒ ( \(\frac{1 + sin θ}{cos θ}\))2 = \(\frac{m}{n}\) ⇒ \(\frac{(1 + sin θ)^2}{(1 - sin^2 θ)}\)= \(\frac{m}{n}\) ⇒ \(\frac{(1 + sin θ)^2}{(1 + sin θ)(1 - sin θ)}\) = \(\frac{m}{n}\) ⇒ \(\frac{1 + sin θ}{1 - sin θ}\) = \(\frac{m}{n}\) ⇒ \(\frac{m + n}{m - n}\) = \(\frac{(1 + sin θ) + (1 - sin θ)}{(1 + sin θ) - (1 - sin θ)}\) = \(\frac{2}{2sin θ}\) = \(\frac{1}{sin θ}\) = cosec θ |