The area bounded by the curves \(y=x^{2}\) and \(y=2|x|\) is |
\(\frac{4}{3}\) \(\frac{2}{3}\) \(\frac{8}{3}\) \(\frac{1}{3}\) |
\(\frac{8}{3}\) |
Area = $2\int\limits_{0}^{2}(2x-x^{2})dx$ $=2\left(4-\frac{8}{3}\right)=2×\frac{4}{3}$ $=\frac{8}{3}$ sq. units |