The following system of equations has : $x+2 y+3 z=1$ $x-y+4 z=0$ $2 x+y+7 z=1$ |
a unique solution no solution infinitely many solutions only two solutions |
no solution |
$x+2 y+3 z=1$ $x-y+4 z=0$ $2 x+y+7 z=1$ $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & -1 & 4 \\ 2 & 1 & 7\end{array}\right]$ $B=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ finding $|A|$ $|A|=\left|\begin{array}{ccc} $=1\left[\begin{array}{rr}-1 & 4 \\ 1 & 7\end{array}\right]-2\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]+3\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$ $=1(-7-4)-2(7-8)+3(1+2)$ $=1(-11)-2(-1)+3(3)$ $-11+2+9$ $=-11+11=0$ as |A| = 0 and every element of B is not zero option → 2, no solution |