If $x$ is a normal variate with mean 12 and standard deviation 4, then $P[X ≥ 20]$ is: [Given that: $P[0 ≤ Z ≤2] = 0.4772$] |
0.9772 0.0228 0.00135 0.7563 |
0.0228 |
The correct answer is Option (2) → 0.0228 Given: $X \sim N(\mu=12, \sigma=4),\ P[X \ge 20] = ?$ Standardize: $Z = \frac{X-\mu}{\sigma} = \frac{20-12}{4} = 2$ Then $P[X \ge 20] = P[Z \ge 2] = 1 - P[Z \le 2]$ Using symmetry: $P[Z \ge 2] = P[Z \le -2]$ Given $P[0 \le Z \le 2] = 0.4772$ and $P[Z \le 0] = 0.5$, so $P[Z \le 2] = 0.5 + 0.4772 = 0.9772$ Therefore $P[X \ge 20] = 1 - 0.9772 = 0.0228$ |