If a is a unit vector and $(\vec x-\vec a).(\vec x+\vec a) = 15$, then the value of $|\vec x|$ is: |
0 16 4 2 |
4 |
The correct answer is Option (3) → 4 Given: $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$ Use identity: $(\vec{p} - \vec{q}) \cdot (\vec{p} + \vec{q}) = \vec{p} \cdot \vec{p} - \vec{q} \cdot \vec{q}$ So, $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = \vec{x} \cdot \vec{x} - \vec{a} \cdot \vec{a}$ $|\vec{x}|^2 - |\vec{a}|^2 = 15$ Since $\vec{a}$ is a unit vector, $|\vec{a}|^2 = 1$ $|\vec{x}|^2 - 1 = 15$ $|\vec{x}|^2 = 16$ $|\vec{x}| = 4$ |