An infinitely long line charge distribution produces a field of $9 × 10^4\, NC^{-1}$ at a distance of 2 cm. The linear charge density of the distribution is: |
$0.01\, μC\, m^{-1}$ $0.1\, μC\, m^{-1}$ $1\, μC\, m^{-1}$ $2\, μC\, m^{-1}$ |
$0.1\, μC\, m^{-1}$ |
The correct answer is Option (2) → $0.1\, μC\, m^{-1}$ Electric field due to an infinite line charge: $E = \frac{\lambda}{2 \pi \epsilon_0 r}$ Given $E = 9 \times 10^4\ \text{N/C}$, $r = 2\ \text{cm} = 0.02\ \text{m}$, $\epsilon_0 = 8.854 \times 10^{-12}\ \text{F/m}$ Solving for linear charge density $\lambda$: $\lambda = 2 \pi \epsilon_0 r E = 2 \pi (8.854 \times 10^{-12}) (0.02) (9 \times 10^4)$ $\lambda \approx 1.0 \times 10^{-7}\ \text{C/m}$ Final Answer: $\lambda \approx 1.0 \times 10^{-7}\ \text{C/m}$ |