The cauchy schwartz inequality for any two vectors \(\vec{a}\) and \(\vec{b}\) is |
\(\left|\vec{a}\cdot \vec{b}\right|=\left|\vec{a}\right|\left|\vec{b}\right|\) \(\left|\vec{a}\cdot \vec{b}\right|\leq\left|\vec{a}\right|\left|\vec{b}\right|\) \(\left|\vec{a}\cdot \vec{b}\right|\geq \left|\vec{a}\right|\left|\vec{b}\right|\) \(\left|\vec{a}+ \vec{b}\right|\leq \left|\vec{a}\right| + \left|\vec{b}\right|\) |
\(\left|\vec{a}\cdot \vec{b}\right|\leq\left|\vec{a}\right|\left|\vec{b}\right|\) |
$|\vec a.\vec b|=|\vec a||\vec b||\cos θ|$ as $0≤\cos θ≤1$ $⇒|\vec a.\vec b|≤|\vec a||\vec b|$ cauchy schwartz inequality |