$\int\limits^{\pi /2}_{0}\sqrt{1-sin2x}\, \, dx$ is equal to : |
$2\sqrt{2}$ $2(\sqrt{2}+1)$ 2 $2(\sqrt{2}-1)$ |
$2(\sqrt{2}-1)$ |
The correct answer is option (4) → $2(\sqrt{2}-1)$ $\int\limits^{\pi /2}_{0}\sqrt{1-\sin 2x}\, dx$ $∵\sqrt{1-\sin 2x}=\sqrt{\cos^2x+\sin^2x-2\sin x\cos x}=|\cos x-\sin x|$ $=\int\limits^{\pi /2}_{0}|\cos x-\sin x|dx$ $=\int\limits^{\pi /4}_{0}\cos x-\sin x\,dx+\int\limits^{\pi /2}_{\pi /4}\sin x-\cos x\,dx$ $=\left[\sin x+\cos x\right]^{\pi /4}_{0}+\left[\sin x+\cos x\right]^{\pi /2}_{\pi /4}$ $=2(\sqrt{2}-1)$ |