If $f(x)=\left\{\begin{matrix}\frac{sin \pi x}{5x}, & x≠0\\k , & x=0 \end{matrix}\right. $ is continuous at x =0, then k is : |
$\frac{5}{\pi}$ $\frac{\pi }{5}$ 1 0 |
$\frac{\pi }{5}$ |
The correct answer is Option (2) → $\frac{\pi }{5}$ $f(0)=k$ $\underset{x→0}{\lim}\frac{\sin πx}{5(πx)}×π=\frac{π}{5}=k$ |