Between $x = 0$ and $x =\frac{π}{2}$ ,let A denote the area enclosed by $y = \sin x, y = \cos x$ and y-axis and $A_2$ denote the area enclosed by $y = \sin x, y = \cos x$ and x-axis. Then, |
$A_1: A_2 =1: \sqrt{2}; A_1 + A_2 = 1$ $A_1 : A_2 = 1:2, A_1 + A_2 =2$ $A_1: A_2 = \sqrt{2}:1; A_1 + A_2 = 1$ $A_1: A_2 = \sqrt{2}:1; A_1 - A_2 = 1$ |
$A_1: A_2 =1: \sqrt{2}; A_1 + A_2 = 1$ |
We find that $A_1=\int\limits_{0}^{π/4}(y_2-y_1)dx=\int\limits_{0}^{π/4}(\cos x−\sin x) dx$ $⇒A_1=\left[\sin x+\cos x\right]_{0}^{π/4}=\sqrt{2}-1$ and $A_2=\int\limits_{0}^{π/4}\sin x\, dx+\int\limits_{π/4}^{π/2}\cos x\,dx$ $⇒A_2=[-\cos x]_{0}^{π/4}+[\sin x]_{π/4}^{π/2}$ $⇒A_2=-\frac{1}{\sqrt{2}}+1+1-\frac{1}{\sqrt{2}}=2-\sqrt{2}$ $∴A_1:A_2=(\sqrt{2}-1):\sqrt{2}(\sqrt{2}-1)=1:\sqrt{2}$ and $A_1+A_2=1$ |