If $A = \begin{bmatrix}1&-1\\2&-1\end{bmatrix}, B = \begin{bmatrix}a&1\\b&-1\end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$ then |
$a = 1, b = 4$ $a = -1, b = 4$ $a = 2, b= -3$ $a = 1, b = -4$ |
$a = 1, b = 4$ |
The correct answer is Option (1) → $a = 1, b = 4$ $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix},\quad B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ Given: $(A + B)^2 = A^2 + B^2$ Expanding the left-hand side using the identity: $(A + B)^2 = A^2 + AB + BA + B^2$ So, $A^2 + AB + BA + B^2 = A^2 + B^2$ Subtracting $A^2 + B^2$ from both sides: $AB + BA = 0$ This implies $AB = -BA$ Compute $AB$: $AB = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ $= \begin{bmatrix} (1)(a) + (-1)(b) & (1)(1) + (-1)(-1) \\ (2)(a) + (-1)(b) & (2)(1) + (-1)(-1) \end{bmatrix}$ $= \begin{bmatrix} a - b & 1 + 1 \\ 2a - b & 2 + 1 \end{bmatrix}$ $= \begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix}$ Compute $BA$: $BA = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ $= \begin{bmatrix} (a)(1) + (1)(2) & (a)(-1) + (1)(-1) \\ (b)(1) + (-1)(2) & (b)(-1) + (-1)(-1) \end{bmatrix}$ $= \begin{bmatrix} a + 2 & -a -1 \\ b - 2 & -b + 1 \end{bmatrix}$ Now equating: $AB + BA = 0$ $\begin{bmatrix} a - b & 2 \\ 2a - b & 3 \end{bmatrix} + \begin{bmatrix} a + 2 & -a -1 \\ b - 2 & -b + 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Add the matrices: $\begin{bmatrix} (a - b) + (a + 2) & 2 + (-a -1) \\ (2a - b) + (b - 2) & 3 + (-b + 1) \end{bmatrix}$ $= \begin{bmatrix} 2a - b + 2 & 1 - a \\ 2a - 2 & 4 - b \end{bmatrix}$ Now equate each element to 0: $2a - b + 2 = 0$ → (1) $1 - a = 0$ → (2) $2a - 2 = 0$ → (3) $4 - b = 0$ → (4) From (2): $a = 1$ From (4): $b = 4$ |