If $x=2t^3+3, y=3t^2+6t+5, $ then the value of $\frac{d^2y}{dx^2}$ is : |
$-\frac{3}{t}$ $-\frac{3}{8t^3}$ $-\frac{4}{7t^2}$ $\frac{6t+6}{4t}$ |
$-\frac{3}{8t^3}$ |
The correct answer is Option (2) → $-\frac{3}{8t^3}$ $x=2t^3+3$ $\frac{dx}{dt}=6t^2$ $y=3t^2+6t+5$ $\frac{dy}{dx}=6t+6$ $⇒\frac{dy}{dx}=\frac{6t+6}{6t^2}=\frac{t+1}{t^2}=\frac{1}{t}+\frac{1}{t^2}$ $⇒\frac{d^2y}{dx^2}=\left(-\frac{1}{t^2}-\frac{2}{t^3}\right)×\frac{dt}{dx}$ $=-\frac{t+2}{t^3}×\frac{1}{6t^2}$ |