The minimum value of the function $P(x)=K_1x+\frac{K_2}{x}, (x>0, K_1 > 0, K_2 > 0)$ is : |
$\sqrt{K_1K_2}$ $3\sqrt{K_1K_2}$ $2\sqrt{K_1K_2}$ No minimum value is possible |
$2\sqrt{K_1K_2}$ |
The correct answer is Option (3) → $2\sqrt{K_1K_2}$ $P(x)=K_1x+\frac{K_2}{x}$ To find minimum value, $f'(x)=0$ and $f''(x)>0$. $⇒P(x)=0$ $⇒K_1x+\frac{K_2}{x}=0$ $⇒x=±\sqrt{\frac{K_2}{K_1}}$ Now, $P'(x)=\frac{2K_2}{x^3}=\frac{2K_2}{\sqrt{K_2}}×\sqrt{K_1}>0$ $∴P\left(\sqrt{\frac{K_2}{K_1}}\right)=K_1\sqrt{\frac{K_2}{K_1}}+K_2\sqrt{\frac{K_1}{K_2}}$ $=\sqrt{K_1}\sqrt{K_2}+\sqrt{K_2}+\sqrt{K_1}$ $=2\sqrt{K_1K_2}$ |