If $A = [a_{ij}]$ be square matrix of order 3, such that $a_{ij} = i + j, ∀i,j$ then which of the following are correct? (A) A is a skew-symmetric matrix. Choose the correct answer from the options given below: |
(A), (B) and (C) only (B) and (D) only (A) and (C) only (C) and (D) only |
(C) and (D) only |
The correct answer is Option (4) → (C) and (D) only Given: $A = [a_{ij}]$ of order 3 with $a_{ij} = i + j$ Matrix A: $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ Check properties: (A) Skew-symmetric: $A^T = -A$ → Not true ($A^T = A$), so False (B) Non-singular: Check determinant: $\det(A) = \begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{vmatrix} = 2(24-25) - 3(18-20) +4(15-16) = 2(-1)-3(-2)+4(-1)=-2+6-4=0$ So singular → inverse does not exist, hence B is False, C is True (D) Symmetric: $A^T = A$ → True |