The following system of equations $2x-y+3z = 5,3x+2y-z = 7,4x+5y-λz=μ$ is consistent. Then |
λ = 5 and μ ≠ 9 λ ≠ 9 and μ = 5 λ = 5 and μ = 9 λ = 5 and μ = 5 |
λ = 5 and μ = 9 |
The correct answer is Option (3) → λ = 5 and μ = 9 Given system: 2x - y + 3z = 5 3x + 2y - z = 7 $4x + 5y - \lambda z = \mu$ To ensure consistency, the third equation must be a linear combination of the first two. Use the ratio method: Form the determinant of the coefficient matrix: $\Delta = \begin{vmatrix} 2 & -1 & 3 \\ 3 & 2 & -1 \\ 4 & 5 & -\lambda \end{vmatrix} = 0$ Expand along row 1: $\Delta = 2 \begin{vmatrix}2 & -1 \\ 5 & -\lambda \end{vmatrix} - (-1) \begin{vmatrix}3 & -1 \\ 4 & -\lambda \end{vmatrix} + 3 \begin{vmatrix}3 & 2 \\ 4 & 5 \end{vmatrix}$ $ = 2(2(-\lambda) - (-1)(5)) + (3(-\lambda) - (-1)(4)) + 3(3(5) - 2(4))$ $ = 2(-2\lambda + 5) + (-3\lambda + 4) + 3(15 - 8)$ $ = -4\lambda + 10 - 3\lambda + 4 + 21$ $ = -7\lambda + 35$ Set $\Delta = 0 \Rightarrow -7\lambda + 35 = 0 \Rightarrow \lambda = 5$ Now use ratio method for constants: Check if $\frac{4}{2} = \frac{5}{-1} = \frac{-\lambda}{3} = \frac{\mu}{5}$ $\frac{4}{2} = 2,\quad \frac{5}{-1} = -5$ (not equal) Use linear combination: Let $a(2,-1,3,5) + b(3,2,-1,7) = (4,5,-\lambda,\mu)$
$2a + 3b = 4$ ...(i) From (ii): $a = 2b - 5$ Substitute into (i): $2(2b - 5) + 3b = 4 \Rightarrow 4b - 10 + 3b = 4 \Rightarrow 7b = 14 \Rightarrow b = 2$ $a = 2(2) - 5 = -1$ Now compute: $-\lambda = a(3) + b(-1) = -1(3) + 2(-1) = -3 - 2 = -5 \Rightarrow \lambda = 5$ $\mu = a(5) + b(7) = -1(5) + 2(7) = -5 + 14 = 9$ |