If $12 x^2-21 x+1=0$, then what is the value of $9 x^2+\left(16 x^2\right)^{-1}$ ? |
$\frac{429}{8}$ $\frac{465}{16}$ $\frac{417}{16}$ $\frac{453}{8}$ |
$\frac{417}{16}$ |
If $K+\frac{1}{K}=n$ then, $K^2+\frac{1}{K^2}$ = n2 – 2 × k × \(\frac{1}{k}\) If $12 x^2-21 x+1=0$ then what is the value of $9 x^2+\left(16 x^2\right)^{-1}$ Divide the equation If $12 x^2-21 x+1=0$ by 4x on both the sides to get the desired format of the equation, 3x + \(\frac{1}{4x}\) = \(\frac{21}{4}\) $9 x^2+\left(16 x^2\right)^{-1}$ = (\(\frac{21}{4}\))2 – 2 × 3x × \(\frac{1}{4x}\) $9 x^2+\left(16 x^2\right)^{-1}$ = \(\frac{441}{16}\) - \(\frac{3}{2}\) $9 x^2+\left(16 x^2\right)^{-1}$ = \(\frac{441 - 24}{16}\) = $\frac{417}{16}$ |