Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Definite Integration

Question:

The value of $I=\int_{0}^{1.5} [x^2]dx$, where [] denotes the greatest integer function, is:

Options:

$2-\sqrt{2}$

$\sqrt{2}$

$5\sqrt{2}$

$3-2\sqrt{2}$

Correct Answer:

$2-\sqrt{2}$

Explanation:

The correct answer is Option (1) → $2-\sqrt{2}$

$I=\int_{0}^{1.5} [x^2]dx$

$=\int_{0}^10\,dx+\int_{1}^{\sqrt{2}}1\,dx+\int_{\sqrt{2}}^{1.5}2\,dx$

$=0+(\sqrt{2}-1)+2(1.5-\sqrt{2})$

$=\sqrt{2}-1+3-2\sqrt{2}$

$=2-\sqrt{2}$