Which of the following statements are true? (A) The vector equation of the line through the point (5, 2, -4) and parallel to the vector $3\hat i+ 2\hat j - 8\hat k$ is Choose the correct answer from the options given below: |
(A), (B) and (C) only (B), (C) and (D) only (A) and (B) only (C) and (D) only |
(A) and (B) only |
The correct answer is Option (3) → (A) and (B) only (A) Line through point $(5,2,-4)$ parallel to $\vec{d} = 3\hat{i} + 2\hat{j} - 8\hat{k}$: $\vec{r} = (5\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(3\hat{i} + 2\hat{j} - 8\hat{k})$ → Correct (B) Given symmetric form: $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ Vector form: $\vec{r} = (5\hat{i} - 4\hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 7\hat{j} + 2\hat{k})$ → Correct (C) Direction cosines of z-axis: $(0,0,1)$ → Not (1,1,0) → Incorrect (D) Direction ratios: 2, -1, -2 Magnitude: $\sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{4+1+4} = 3$ Direction cosines: $(2/3, -1/3, -2/3)$ → Not (-2/3, -1/3, -2/3) → Incorrect |