If the matrix $\begin{bmatrix}a& -2 & 5b\\2 & 0 & -15\\15 & 3c & 0 \end{bmatrix}$ is skew-symmetric, then the value of $a^2+b^2+c^2 $ is : |
15 34 25 16 |
34 |
The correct answer is Option (2) → 34 for a skew-symmetric matrix, $A^T=-A$ $\begin{bmatrix}a& 2 & 15\\-2 & 0 & 3c\\5b & -15 & 0 \end{bmatrix}=\begin{bmatrix}-a& 2 & -5b\\-2 & 0 & 15\\-15 & -3c & 0 \end{bmatrix}$ $⇒a=-a=0$ $⇒-5b=15⇒b=-3$ $⇒3c=15⇒c=5$ $∴a^2+b^2+c^2=34$ |