$\int\limits_0^{\frac{\pi}{4}} \frac{\sin 2 x}{\cos ^4 x+\sin ^4 x} d x=$ |
$\frac{\pi}{2}$ $\frac{\pi}{4}$ $\pi$ 0 |
$\frac{\pi}{4}$ |
The correct answer is Option (2) → $\frac{\pi}{4}$ $\int\limits_0^{\frac{\pi}{4}} \frac{\sin 2 x}{\cos ^4 x+\sin ^4 x} d x=\int\frac{2\sin x\cos x}{\cos ^4 x+\sin ^4 x}dx$ |