If it is given that at $x = 1$, the function $f(x) = x^4 - 62x^2 + 2ax +8$ attains its maximum value on the interval [0, 2], then the value of $a$ is: |
120 60 0 -60 |
60 |
The correct answer is Option (2) → 60 Given: $f(x) = x^4 - 62x^2 + 2ax + 8$ attains maximum at $x=1$ on $[0,2]$ Derivative: $f'(x) = 4x^3 - 124x + 2a$ Maximum at $x=1 \Rightarrow f'(1) = 0$ $f'(1) = 4 - 124 + 2a = -120 + 2a = 0 \Rightarrow 2a = 120 \Rightarrow a = 60$ Answer: $a = 60$ |