The equation of normal at the point (1,1) on the curve $2y+x^3=3$ is : |
$2y+3x=5$ $x+y = 0 $ $3y - 2x=1$ $x+y + 1=0$ |
$3y - 2x=1$ |
The correct answer is Option (3) → $3y - 2x=1$ The given curve is, $2y+x^3=3$ Differentiating this w.r.t. 'x', $⇒2\frac{dy}{dx}+3x^2=0$ $⇒\frac{dy}{dx}=-\frac{3x^2}{2}$ Now, the slope of normal to the curve is, $\frac{dy}{dx}=\frac{2}{3x^2}$ $\left.\frac{dy}{dx}\right|_{(1,1)}=\frac{2}{3}$ Equation of the normal, $y-y_1=m_{normal}(x-x_1)$ $y-1=\frac{2}{3}(x-1)$ |