When a ray of light is incident at an angle of incidence 60° on one face of an equilateral prism the angle of deviation is found to be minimum. The refractive index of the prism material is: |
$\sqrt{3}$ $\sqrt{2}$ 1.5 1.33 |
$\sqrt{3}$ |
The correct answer is Option (1) → $\sqrt{3}$ Angle of Minimum deviation ($δ_{min}$) through the prism - $δ_{min}=2i-A$ [i = Angle of incidence, A = Angle of prism] $=2×60-60$ $=60°$ $μ=\frac{\sin\left(\frac{A+δ_{min}}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ $=\frac{\sin\left(\frac{60+60}{2}\right)}{\sin\left(\frac{60}{2}\right)}=\sqrt{3}$ |