The capacities of two capacitors are $C_1$ and $C_2$ and their respective potentials are $V_1$ and $V_2$. If they are connected with a wire, then the loss of energy is given by: |
$\frac{C_1 C_2\left(V_1+V_2\right)}{2\left(C_1+C_2\right)}$ $\frac{C_1 C_2\left(V_1-V_2\right)}{2\left(C_1+C_2\right)}$ $\frac{C_1 C_2\left(V_1-V_2\right)^2}{2\left(C_1+C_2\right)}$ $\frac{\left(C_1+C_2\right)\left(V_1-V_2\right)}{C_1 C_2}$ |
$\frac{C_1 C_2\left(V_1-V_2\right)^2}{2\left(C_1+C_2\right)}$ |
The correct answer is Option (3) → $\frac{C_1 C_2\left(V_1-V_2\right)^2}{2\left(C_1+C_2\right)}$ On connecting, 'V' be the common potential. According to law of conservation of charge - $Q_{initial}=Q_{final}$ $C_1V_1+C_2V_2=C_1V+C_2V$ $⇒V=\frac{C_1V_1+C_2V_2}{C_1+C_2}$ Energy loss = $Ei-Ef$ $=\frac{1}{2}{C_1V_1}^2+\frac{1}{2}{C_2V_2}^2-\frac{1}{2}(C_1C_2)V^2$ $=\frac{C_1 C_2\left(V_1-V_2\right)^2}{2\left(C_1+C_2\right)}$ |