If $\vec a, \vec b, \vec c$ be three vectors such that $|\vec a+\vec b+\vec c|=1, \vec c=λ(\vec a×\vec b)$ and $|\vec a|=\frac{1}{\sqrt{6}},|\vec b|=\frac{1}{\sqrt{3}}$ and $|\vec c|=\frac{1}{\sqrt{2}}$, then the angle between $\vec a$ and $\vec b$ is |
$\frac{π}{6}$ $\frac{π}{4}$ $\frac{π}{3}$ $\frac{π}{2}$ |
$\frac{π}{2}$ |
Let θ be the angle between $\vec a$ and $\vec b$. We have, $\vec c=λ(\vec a×\vec b)⇒\vec c⊥\vec a,\vec c⊥\vec b⇒\vec c.\vec a=\vec c.\vec b=0$ Now,$|\vec a+\vec b+\vec c|=1$ $⇒|\vec a+\vec b+\vec c|^2=1$ $⇒|\vec a|^2+|\vec b|^2+|\vec c|^2+2(\vec a.\vec b+\vec b.\vec c+\vec c.\vec a)=1$ $⇒\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+2\left\{|\vec a||\vec b|\cos θ\right\}=1$ $⇒\cos θ=0⇒θ=\frac{π}{2}$ |