If $A=\begin{bmatrix} n & 0 & 0 \\ 0 & n & 0\\0 & 0 & n\end{bmatrix}$ and $B=\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\\c_1 & c_2 & c_3\end{bmatrix}$ then AB is equal to : |
$B$ $nB$ $B^n$ $A+B$ |
$nB$ |
The correct answer is Option (2) → $nB$ $A=\begin{bmatrix} n & 0 & 0 \\ 0 & n & 0\\0 & 0 & n\end{bmatrix}$ and $B=\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\\c_1 & c_2 & c_3\end{bmatrix}$ $AB=n.I.B=nB$ |