Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Differential Equations

Question:

Given differential equation, $(1+ y^2)dx = (\tan^{-1}y-x)dy$, then which of the following is/are true?

(A) Integrating factor = $\tan^{-1}x$
(B) Integrating factor = $\tan^{-1}y$
(C) Integrating factor = $e^{\tan^{-1}}y$
(D) Degree = 1

Choose the correct answer from the options given below:

Options:

(B) and (D) only

(A) only

(C) only

(C) and (D) only

Correct Answer:

(C) and (D) only

Explanation:

The correct answer is Option (4) → (C) and (D) only

Given differential equation:

$(1+y^2)\,dx = (\tan^{-1}y - x)\,dy$

Rewrite as linear in $x$ with independent variable $y$:

$\displaystyle \frac{dx}{dy} + \frac{1}{1+y^2}\,x = \frac{\tan^{-1}y}{1+y^2}$

Check for an integrating factor depending only on $y$ by computing the coefficient of $x$ (which is $\frac{1}{1+y^2}$). An integrating factor is $\displaystyle \mu(y)=\exp\!\bigg(\int \frac{1}{1+y^2}\,dy\bigg)=\exp(\tan^{-1}y)=e^{\tan^{-1}y}\,$, so a valid integrating factor is $e^{\tan^{-1}y}$.

Therefore:

  • (A) Integrating factor = $\tan^{-1}x$False.
  • (B) Integrating factor = $\tan^{-1}y$False (not of the form $\mu(y)$; missing the exponential).
  • (C) Integrating factor = $e^{\tan^{-1}y}$True.
  • (D) Degree = 1True (first degree in $\frac{dx}{dy}$ or $\frac{dy}{dx}$).