Consider the differential equation $xdy = (x + y) dx$. Which of the following are true? (A) It is a homogenous differential equation Choose the correct answer from the options given below: |
(A), (B) and (C) only (A), (D) and (E) only (A) and (D) only (B) and (C) only |
(A) and (D) only |
The correct answer is Option (3) → (A) and (D) only Given: $x\,dy = (x + y)\,dx$ Rewriting: $x \frac{dy}{dx} = x + y$ $\Rightarrow x \frac{dy}{dx} - y = x$ This is a linear differential equation of the form: $\frac{dy}{dx} + P(x)y = Q(x)$, where $P(x) = -\frac{1}{x}$ and $Q(x) = 1$ Integrating Factor (I.F.) $= e^{\int P(x) dx} = e^{\int -\frac{1}{x} dx} = e^{-\ln|x|} = \frac{1}{x}$ Multiply entire equation by $\frac{1}{x}$: $\frac{1}{x} \cdot \frac{dy}{dx} - \frac{y}{x^2} = 1/x$ $\Rightarrow \frac{d}{dx} \left(\frac{y}{x}\right) = \frac{1}{x}$ Integrate both sides: $\frac{y}{x} = \ln|x| + C \Rightarrow y = x\ln|x| + Cx$ Now verify the statements: (A) ✔️ True — $\frac{dy}{dx} = 1 + \frac{y}{x}$ is homogeneous (B) ❌ False — Order = 1 (C) ❌ False — Only 1 arbitrary constant (D) ✔️ True — I.F. = $\frac{1}{x}$ (E) ❌ False — Degree is defined and equals 1 |