The kinetic energy of an electron in a given orbit in a hydrogen atom is: (symbols have their usual meanings) |
$\frac{e^2}{4πε_0r}$ $\frac{e^2}{8πε_0r}$ $\frac{e^2}{8πε_0r}$ $\frac{e^2}{3πε_0r}$ |
$\frac{e^2}{8πε_0r}$ |
The correct answer is Option (3) → $\frac{e^2}{8πε_0r}$ For a hydrogen atom, the centripetal force is provided by the Coulomb force: $\frac{mv^2}{r} = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{r^2}$ $mv^2 = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{r}$ Kinetic energy: $K = \frac{1}{2} mv^2 = \frac{1}{8 \pi \epsilon_0} \frac{e^2}{r}$ Final Answer: $K = \frac{e^2}{8 \pi \epsilon_0 r}$ |