Find the equivalent capacitance between the points A and B. |
4 μF 3 μF 18 μF 6 μF |
4 μF |
The correct answer is Option (1) → 4 μF Equivalent capacitance between A and B: Top branch: two capacitors in series, $C_{top}=\frac{3 \times 3}{3+3}=1.5 \,\mu F$ Bottom branch: two capacitors in series, $C_{bottom}=\frac{3 \times 3}{3+3}=1.5 \,\mu F$ Diagonal capacitor (3 μF) parallel to left capacitor of top branch gives, $C_{left}=3+3=6 \,\mu F$ So effective top branch, $C_{top}=\frac{6 \times 3}{6+3}=\frac{18}{9}=2 \,\mu F$ Diagonal capacitor (3 μF) parallel to right capacitor of bottom branch gives, $C_{right}=3+3=6 \,\mu F$ So effective bottom branch, $C_{bottom}=\frac{3 \times 6}{3+6}=\frac{18}{9}=2 \,\mu F$ Now these two branches are in parallel, $C_{eq}=2+2=4 \,\mu F$ Final Answer: $C_{eq}=4 \,\mu F$ |