The product moment correlation or the Karl Pearson’s measure of correlation is given by_______. |
\[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y - (\sum y)^2]}} \] \[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} \] \[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x - (\sum x)^2][n \sum y - (\sum y)^2]}} \] \[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} \] |
\[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} \] |
The correct answer is Option 4: \[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} \] The product-moment correlation or the Karl Pearson’s measure of correlation is given by the following formula: |