If $x^2-5 x+1=0$, then the value of $\frac{x^6+x^4+x^2+1}{5 x^3}=$ ? |
30 25 23 28 |
23 |
We have, $x^2-5 x+1=0$ We can write the above equation as, x + \(\frac{1}{x}\) = 5 So, x3 + \(\frac{1}{x^3}\) = 53 - 5 × 3 = 110 We have to find the value of $\frac{x^6+x^4+x^2+1}{5 x^3}$ Taking x3 as common from both the numerator and denominator we get, = (x3 + \(\frac{1}{x^3}\) + x + \(\frac{1}{x}\)) / 5 = (110 + 5) / 5 = 23 |