Consider the following hypothesis test :
A sample of 50 provided a sample mean of 14.15 and standard deviation is 3. Then, which of the following is true ? (A) $\mu_0= 15, n=50, \overline{x}=14.15, σ = 3$ (B) $n= 15, \mu_0= 50, σ =14.15, \overline{x}=3$ (C) Test statistic is given by $z=\frac{\overline{x}-\mu_0}{\frac{σ }{\sqrt{n}}}$ (D) $z=\frac{14.15-15}{\frac{3}{\sqrt{50}}}$ (E) $z=\frac{50-15}{\frac{3}{\sqrt{14.15}}}$ Choose the correct answer from the options given below : |
(A), (B), (C) only (A), (C), (D) only (C), (D), (E) only (D), (E) only |
(A), (C), (D) only |
The correct answer is Option (2) → (A), (C), (D) only Null Hypothesis, $H_0 : \mu =15$ Alternative Hypothesis, $H_a : \mu ≠ 15$ Sample size, $n=50$ Sample Mean, $\bar x=14.15$ Sample Standard Deviation, $σ=3$ → (A) t-test statistic formula is, $z=\frac{\overline{x}-\mu_0}{\frac{σ }{\sqrt{n}}}$ → (C) $=\frac{14.15-15}{\frac{3}{\sqrt{50}}}$ → (D) |