Let box I contains 3 black and 4 white balls, box II contains 2 black and 2 white balls, box III contains 4 black and 3 white balls. A box is selected at random and then a ball is randomly drawn from the selected box. If the color of the ball is black then the probability that the ball is drawn from box III, is: |
$\frac{1}{7}$ $\frac{4}{21}$ $\frac{8}{21}$ $\frac{9}{21}$ |
$\frac{8}{21}$ |
The correct answer is Option (3) → $\frac{8}{21}$ Total boxes = 3. Probability of selecting any box = $\frac{1}{3}$. Define events: $B_1$: Ball drawn from Box I $B_2$: Ball drawn from Box II $B_3$: Ball drawn from Box III $A$: Black ball is drawn Now, compute: $P(A|B_1) = \frac{3}{7}$, $P(A|B_2) = \frac{2}{4} = \frac{1}{2}$, $P(A|B_3) = \frac{4}{7}$ By Bayes' Theorem: $P(B_3|A) = \frac{P(B_3) \cdot P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$ $= \frac{\frac{1}{3} \cdot \frac{4}{7}}{\frac{1}{3} \cdot \frac{3}{7} + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{4}{7}}$ Numerator: $\frac{4}{21}$ Denominator: $\frac{3}{21} + \frac{1}{6} + \frac{4}{21} = \frac{7}{21} + \frac{1}{6} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ $P(B_3|A) = \frac{4/21}{1/2} = \frac{8}{21}$ |