The demand function $P$ for maximising a profit monopolist is given by $P=274-x^2$, while the marginal cost is $4+3x$ for $x$ units of commodity. The consumer surplus is |
274 1737 193 486 |
486 |
The correct answer is Option (4) → 486 Given demand function: $P = 274 - x^2$ Marginal cost: $MC = 4 + 3x$ For monopoly, profit is maximised where $MR = MC$. Total Revenue: $TR = P \cdot x = (274 - x^2)x = 274x - x^3$ Marginal Revenue: $MR = \frac{d(TR)}{dx} = 274 - 3x^2$ Equilibrium condition: $MR = MC$ $274 - 3x^2 = 4 + 3x$ $274 - 4 = 3x^2 + 3x$ $270 = 3x^2 + 3x$ $x^2 + x - 90 = 0$ $(x+10)(x-9) = 0$ $x = 9$ (positive root) Corresponding price: $P = 274 - (9)^2 = 274 - 81 = 193$ Consumer surplus formula: $CS = \int_0^{x_0} P(x)\,dx - P(x_0)\cdot x_0$ $CS = \int_0^9 (274 - x^2)\,dx - (193)(9)$ $\int_0^9 (274 - x^2)\,dx = [274x - \frac{x^3}{3}]_0^9$ $= (274\cdot 9 - \frac{729}{3}) - 0$ $= 2466 - 243 = 2223$ Now subtract: $P(9)\cdot 9 = 193 \cdot 9 = 1737$ $CS = 2223 - 1737 = 486$ Final Answer: Consumer surplus = $486$ |