A proton and an alpha particle moving with same kinetic energy enter in the region of uniform magnetic field perpendicular to it. The ratio of radii of their trajectories will be: |
1 : 1 $\sqrt{2}: 1$ 4 : 1 $1: \sqrt{2}$ |
1 : 1 |
The correct answer is Option (1) → 1 : 1 Using Lorentz force, $qvB=\frac{mv^2}{r}$ [Moving in circle] $⇒r=\frac{mv}{qB}=\frac{m}{qB}\sqrt{\frac{2KE}{m}}$ $[v=\sqrt{\frac{2KE}{m}}]$ $=\frac{\sqrt{2mKE}}{qB}$ Mass of proton = $m_p$ Charge of proton = $e$ Mass of Alpha particle = $4m_p$ Charge of Alpha particle = $2e$ $⇒\frac{r_α}{r_p}=\frac{\frac{\sqrt{(4m_p)KE}}{2eB}}{\frac{\sqrt{2m_pKE}}{eB}}$ $=\frac{2}{2}=1$ |