A letter is known to have come either from KOLKATA or TATANAGAR. On the envelope just two consecutive letters TA are visible. The probability that letter has come from TATANAGAR is |
$\frac{2}{5}$ $\frac{3}{5}$ $\frac{1}{4}$ $\frac{2}{3}$ |
$\frac{3}{5}$ |
The correct answer is Option (2) → $\frac{3}{5}$ Let $E_1$: Letter from KOLKATA, $E_2$: Letter from TATANAGAR. $P(E_1) = \frac12, \quad P(E_2) = \frac12$ Event $A$: The two consecutive letters "TA" are visible. For KOLKATA: Letters: K O L K A T A Number of 2-letter sequences = $7-1=6$ "TA" occurs only once ⇒ $P(A|E_1) = \frac16$ For TATANAGAR: Letters: T A T A N A G A R Number of 2-letter sequences = $9-1=8$ "TA" occurs twice ⇒ $P(A|E_2) = \frac28 = \frac14$ Bayes' theorem: $P(E_2|A) = \frac{P(E_2) \cdot P(A|E_2)}{P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2)}$ $= \frac{\frac12 \cdot \frac14}{\frac12 \cdot \frac16 + \frac12 \cdot \frac14}$ $= \frac{\frac18}{\frac{1}{12} + \frac18}$ LCM of 12 and 8 is 24: $= \frac{\frac{3}{24}}{\frac{2}{24} + \frac{3}{24}}$ $= \frac{3}{5}$ |