Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Probability

Question:

A letter is known to have come either from KOLKATA or TATANAGAR. On the envelope just two consecutive letters TA are visible. The probability that letter has come from TATANAGAR is

Options:

$\frac{2}{5}$

$\frac{3}{5}$

$\frac{1}{4}$

$\frac{2}{3}$

Correct Answer:

$\frac{3}{5}$

Explanation:

The correct answer is Option (2) → $\frac{3}{5}$

Let $E_1$: Letter from KOLKATA, $E_2$: Letter from TATANAGAR.

$P(E_1) = \frac12, \quad P(E_2) = \frac12$

Event $A$: The two consecutive letters "TA" are visible.

For KOLKATA:

Letters: K O L K A T A

Number of 2-letter sequences = $7-1=6$

"TA" occurs only once ⇒ $P(A|E_1) = \frac16$

For TATANAGAR:

Letters: T A T A N A G A R

Number of 2-letter sequences = $9-1=8$

"TA" occurs twice ⇒ $P(A|E_2) = \frac28 = \frac14$

Bayes' theorem:

$P(E_2|A) = \frac{P(E_2) \cdot P(A|E_2)}{P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2)}$

$= \frac{\frac12 \cdot \frac14}{\frac12 \cdot \frac16 + \frac12 \cdot \frac14}$

$= \frac{\frac18}{\frac{1}{12} + \frac18}$

LCM of 12 and 8 is 24:

$= \frac{\frac{3}{24}}{\frac{2}{24} + \frac{3}{24}}$

$= \frac{3}{5}$