The value of $\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan x}$ is: |
$\frac{\pi}{4}$ $\frac{\pi}{6}$ $\frac{\pi}{9}$ $\frac{\pi}{12}$ |
$\frac{\pi}{12}$ |
The correct answer is Option (4) → $\frac{\pi}{12}$ $\int\limits_a^bf(x)dx=\int\limits_a^bf(a+b-x)dx$ $I=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{1}{1+\tan(\frac{\pi}{2}-x)}dx$ $I=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{1}{1+\cot x}dx=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{1}{1+\tan x}dx$ $∴2I=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}\right)dx$ $2I=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\frac{1}{1+\tan x}+\frac{\tan x}{1+\tan x}\right)dx$ $2I=\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}}1dx=\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{\pi}{6}$ $∴I=\frac{\pi}{12}$ |