If $y = log (x + \sqrt{x^2+a^2})$ then $\frac{dy}{dx}=$ |
$\frac{1}{\sqrt{x^2+a^2}}$ $\sqrt{x^2+a^2}$ $\frac{-1}{\sqrt{x^2+a^2}}$ $-\sqrt{x^2+a^2}$ |
$\frac{1}{\sqrt{x^2+a^2}}$ |
The correct answer is Option (1) → $\frac{1}{\sqrt{x^2+a^2}}$ $y = \log (x + \sqrt{x^2+a^2})$ $\frac{dy}{dx}=\frac{1}{x + \sqrt{x^2+a^2}}\left(1+\frac{1}{2}\frac{2x}{2\sqrt{x^2+a^2}}\right)$ $=\frac{(\sqrt{x^2+a^2}+x}{(x+\sqrt{x^2+a^2})}×\frac{1}{\sqrt{x^2+a^2}}$ $=\frac{1}{\sqrt{x^2+a^2}}$ |